Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression.
نویسندگان
چکیده
In the immune system, extracellular ATP functions as a "natural adjuvant" that exhibits multiple proinflammatory effects. It is released by damaged cells as an indicator of trauma and cell death but can be inactivated by CD39 (nucleoside triphosphate diphosphohydrolase-1 [NTPDase 1]), an ectoenzyme that degrades ATP to AMP. Here, we show that CD39 is expressed primarily by immune-suppressive Foxp3(+) regulatory T (Treg) cells. In mice, the enzyme is present on virtually all CD4(+)CD25(+) cells. CD39 expression is driven by the Treg-specific transcription factor Foxp3 and its catalytic activity is strongly enhanced by T-cell receptor (TCR) ligation. Activated Treg cells are therefore able to abrogate ATP-related effects such as P2 receptor-mediated cell toxicity and ATP-driven maturation of dendritic cells. Also, human Treg cells express CD39. In contrast to mice, CD39 expression in man is restricted to a subset of Foxp3(+) regulatory effector/memory-like T (T(REM)) cells. Notably, patients with the remitting/relapsing form of multiple sclerosis (MS) have strikingly reduced numbers of CD39(+) Treg cells in the blood. Thus, in humans CD39 is a marker of a Treg subset likely involved in the control of the inflammatory autoimmune disease.
منابع مشابه
IMMUNOBIOLOGY Expression of ectonucleotidase CD39 by Foxp3 Treg cells: hydrolysis of extracellular ATP and immune suppression
In the immune system, extracellular ATP functions as a “natural adjuvant” that exhibits multiple proinflammatory effects. It is released by damaged cells as an indicator of trauma and cell death but can be inactivated by CD39 (nucleoside triphosphate diphosphohydrolase-1 [NTPDase 1]), an ectoenzyme that degrades ATP to AMP. Here, we show that CD39 is expressed primarily by immune-suppressive Fo...
متن کاملCD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis.
Despite the fact that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) play a central role in maintaining self-tolerance and that IL-17-producing CD4(+) T cells (Th17 cells) are pathogenic in many autoimmune diseases, evidence to date has indicated that Th17 cells are resistant to suppression by human Foxp3(+) Treg cells. It was recently demonstrated that CD39, an ectonucleotidase which hy...
متن کاملIsolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression.
Human regulatory T cells (Treg) have been variously defined as CD4(+)CD25(+), CD4(+)CD25(high) or CD4(+)CD25(high)FOXP3(+) cells which are responsible for maintaining peripheral tolerance. Their isolation from human peripheral blood or tissues depends on the expression level of CD25(IL-2Ralpha) - a surface marker which is also expressed on activated effector helper T cells. CD39, a cell surface...
متن کاملHigh expression of the ectonucleotidase CD39 on T cells from the inflamed site identifies two distinct populations, one regulatory and one memory T cell population.
The ectonucleotidase CD39 has recently been described as being highly expressed on regulatory Foxp3(+) CD4 T cells. Through hydrolysis of proinflammatory extracellular ATP, CD39 activity represents a newly described mechanism of regulatory T cell action. We report a novel population of human CD4 T cells that express CD39 yet are Foxp3 negative. These cells produce the proinflammatory cytokines ...
متن کاملIncreased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer.
PURPOSE Regulatory T cell (Treg) frequency and activity are increased in cancer patients and play a major role in tumor escape. Although disease progression is favored by the presence of Treg, mechanisms used by Treg to suppress antitumor immunity are unknown. The ectonucleotidases CD39 and CD73 are expressed in Treg and convert ATP into immunosuppressive adenosine. In this study, the involveme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2007